LETTERS TO THE EDITOR

Are Allylic Hydrogens in Catechins More Abstractable
Than Catecholic Hydrogens?

Sir:

Catechins, the main components of green tea polyphenols,
including (—)-epicatechin (EC), (—)-epigallocatechin (EGC),
(—)-epicatechin gallate, and (—)-epigallocatechin gallate, are
excellent antioxidants (1,2). The free radical scavenging ac-
tivity of catechins arises from their abstractable phenolic hy-
drogens, specifically, the catecholic hydrogens in ring B (Fig.
1) (1,2). In fact, the O—H bond dissociation enthalpies (BDE)
of hydroxyls in ring B are comparable to that of a-tocoph-
erol, a good radical scavenger (3). Kondo and coworkers
(4-6) have proposed that the allylic hydrogens of catechins
are more abstractable than the catecholic hydrogens, because
the C—H BDE calculated by using the parametric method 3
(PM3) or Austin model 1 (AM1) for allylic hydrogens were
much lower than O—H BDE of the catecholic hydrogens (Fig.
1). If this is true, the structure—activity relationships for cate-
chins will have to be reevaluated, as the allylic hydrogens
were taken out of consideration in recent studies. However,
taking into account that the typical C—H BDE of toluene is
~89 kcal/mol (7) and that the substituents have little effect on
the C-H BDE (8), the unexpectedly low C—H BDE in cate-
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chins may result from the inaccuracy of the quantum chemi-
cal method used in the calculations.

Semiempirical quantum chemical methods, such as PM3
(9), AMI1 (10), and modified neglect of diatomic overlap
(MNDO) (11), employ experimental data as a part of the pa-
rameters in the calculation process. Hence, these methods are
time saving and rather accurate in many cases, especially for
optimizing geometries. MNDO is a preliminary semiempiri-
cal method; however, it is invalid in calculating hydrogen
bond energy. AM1 was modified on the basis of MNDO, with
the advantage of accurately estimating hydrogen bond energy.
PM3 is the newest semiempirical method and is especially
good at calculating molecules containing sulfur and nitrogen
atoms.

Although the semiempirical methods are capable of calcu-
lating relative O—H BDE (12-15), there is no evidence that
these methods are appropriate to calculate the absolute O—H
or C—H BDE. In this letter, BDE in catechins were recalcu-
lated by a combined quantum chemical method, and the re-
sults are compared with those of Kondo and coworkers. The
calculation procedures are as follows. The most stable
geometries of molecules were constructed according to the
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FIG. 1. Bond dissociation enthalpies for catechins calculated by semiempirical quantum chemical methods [para-
metric method 3 (PM3) and Austin model 1 (AM1)] and combined density functional theory (DFT).
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previous methods (16,17). The geometry optimization and the
determination of vibration frequencies were performed using
the semiempirical AM1 method (10) and then single-point
electronic energies were obtained by density functional the-
ory using the B3LYP functions (18-20) on the 6-31G(p”)
level. The calculation was achieved by the Gaussian-94 pro-
gram. By using the electronic energies and the scaled zero-
point energies (the scaled factor is 0.947), the C-H and O-H
BDE were obtained. The accuracy of this method is well es-
tablished for calculations on C-H and O-H BDE (7,21,22).
As shown in Figure 1, the recalculated O—H BDE of EC
are slightly higher than those of EGC, which is consistent
with the fact that EGC scavenges peroxyl radicals more
quickly than EC (4,6). Furthermore, the C—H BDE in cate-
chins are higher than the O—H BDE, indicating that allylic hy-
drogens are not more abstractable than catecholic hydrogens
and that the hydrogen abstraction at position 4’ will most
likely occur more quickly than the reactions at other posi-
tions. However, the C—H BDE for position 2 of catechins are
comparable to the O—H BDE for position 3’, implying that the
2-H can compete with 3’-OH to scavenge peroxyl radicals.
Hence, the radical-scavenging mechanisms for catechins pro-
posed by Kondo et al. (4-6) are still reasonable, and the in-
teresting part of their theory is that allylic hydrogens also par-
ticipate in the radical-scavenging processes for catechins.
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